Coping With Climate:

How our changing environment is affecting native plants and habitat restoration in the Pacific Northwest and beyond

Tom Kaye, PhD Executive Director

Mission

Conserve native species and habitats through restoration, research, and education Contact: info@appliedeco.org

Welcome to the Anthropocene

Climatewizard.org, average annual temperature change by 2080s

Rupp et al., 2016. Adapted for Oregon, Integrated Scenarios Project, Kathie Dello

Some effects of climate change on plants

- Loss of diversity
- Changes in phenology
- Range shifts
- Species extinctions
- Complex interactions with land use

Diversity is in decline because of climate change

Damschen, Harrison, and Grace, 2010. *Ecology*.

Strong declines in northern and endemic species, shift to southern-type and south-facing communities

Shifting phenology in the PNW

Kopp et al., 2020. International Journal of Biometeorology

Ranges may need to shift with climate change

Declined with heating and drought.

Improved with heating and drought beyond northern range limit

Reed et al., 2020. Journal of Ecology.

Trees may need to shift to survive and reproduce

Monleon and Lintz, 2015. Plos One.

Seedlings of 33 species prefer cooler temps than trees

Population extinctions are being driven by climate change, population size, and time

Site revisits: Cypripedium fasciculatum

Kaye et al, 2019. Plos One

Greene's mariposa lily (Calochortus greenei)

Greene's mariposa lily (Calochortus greenei)

Top driver: Minimum temperature in spring

- Climate change
- Past climate

Sourcing plants for habitat restoration in a changing climate

- Local adaptation
- Future climate analogs

Local adaptation: Nonlocal types may fail in restorations

Planning for climate change

- Changing climate means optimal environments for species may shift
- Strategies for obtaining seeds:
 - Strict local
 - Relaxed (mixed) local
 - Composite mix
 - Admixture (range-wide mix)
 - Predictive (matching to future climate)

Havens et al., 2015. Natural Areas Journal Breed et al., 2013. Conservation Genetics

Composite mix

Example: *Iris tenax*Multiple collections from throughout an ecoregion

"Climate-Smart" Seedlot Selection Tool (SST)

- seedlotselectiontool.org
- US Forest Service,
 Conservation Biology Institute
- Identifies locations from which seeds may be moved to new site to match climate
- User specified past or future climate scenario

2041-2070 2071-2100 Sacramento

Climate admixtures of plant sources Assisted migration trials

Beyond Assisted Migration:

Climate

matching

Adaptive Sourcing

Diversity

Adapted and Adaptable

Collect from adjacent future climate-analog locations, import needed genes

Local adaptation

Genetic diversity

Collect locally to leverage "home site advantage"

Collect from multiple sites, including <u>harsh</u> locations and in <u>bad years</u>

Join us!

Mission

Conserve native species and habitats through restoration, research, and education.

Contact: info@appliedeco.org; www.appliedeco.org