

Bradyn Kawcak Capstone Internship: UW Farm Site Supervisor: Sarah Guerkink Faculty Advisor: Daniel Vogt

Intercropping

- Definition-When two or more crops are planted in the same agricultural bed
- Current Academic Findings
 - Reduced nitrate leaching
 - Small tropical farms getting more yield in same space
 - Increases in biomass production while incorporating perennials

Rational

- Large scale, single crop, industrial farming causes widespread environmental problems
- Small scale, multi-crop farming could potentially mitigate environmental degradation associated with agriculture
 - Year long harvest dates
 - Biological benefits of biodiversity
- Therefore it is valuable to environmentally compare the common practice of monoculture to the alternative method of intercropping.

A Single Succession Intercropping-Monoculture Cost-Benefit Comparison Experiment

- Purpose- To compare the practice of monoculture to the practice of intercropping through an environmentally focused cost-benefit analysis.
- Hypothesis- The net value of the intercrop sample is higher than the net values of the monoculture samples

Data Collection and Conversion

Economic Translations

- Raw Data from plots
- Prices of Vegetables and Fertilizers
- Damage Estimates from Academic Sources
- Unit Conversion Ratios

5% Soil Organic Matter / 1.72 (SOM to SOC conversion) = 2.91% Soil Organic Carbon

2.91% * .483g/cm³ (bulk density) * 3958695.17g/cm³ (volume of plot) = 55640.65g of Soil Carbon

• Soil Carbon Content (g)

55640.65g* 10^-6 (grams to tC conversion)* 3 (comparison factor)*
\$50/tC (Marginal Damage of CO2
Emissions) = \$8.35

•Value of Soil Carbon Sequestration (\$)

88.35 / 70 ft. = 1193 / ft.

Plot Value / Bed Feet (\$/ft.)

Factors of the Cost-Benefit Analysis

- Revenue
- Soil Carbon Sequestration
- Replacement Costs of Fertilizer N, P205, K20, CaCO3
- Social and Environmental Costs of N20 and NOx Fertilizer Emissions
- Environmental Costs of Fertilizer Production Emissions for N, P205, K20, CaCO3
- Environmental Cost of Nitrate Leaching
- Environmental Cost of Natural Soil Loss

Final Net Values and C:B Ratios of the Experiment

Revenue

Larger Implications

- Environmental accounting on small scale farm budgets
- Evaluation method applied to large scale agriculture
- Political Considerations
 - Carbon tax revenues to farmers that sequester carbon
 - Implementing fertilizer tax

Thank You!

