Phylogenetic perspectives on Californian plant diversity, endemism, and conservation
Bruce G. Baldwin, University of California-Berkeley
California Floristic Province

Global-scale biodiversity hotspot (~300,000 km2)

Isolated, young Mediterranean-type climate (winter wet / summer dry)

Geological & climatic diversity & dynamism

Pockets of stable, equable climate (refugia)

Figure from Raven & Axelrod 1978
Discoveries in California floristics

- Fine-scale diversity worthy of taxonomic recognition and informative about evolution keeps emerging
- Progress in understanding origins and relationships of CA flora deepens appreciation for magnitude of diversification in CA (& N.Am.)
- New approaches to studying spatial patterns of diversity and endemism help to pinpoint areas of special floristic and conservation value
Undiscovered fine-scale plant diversity in California?

Shasta snow-wreath (*Neviusia cliftonii*)
Discovered in 1992 in N. California

© Neal Kramer
More discoveries in the Klamath Ranges

Vaccinium shastense subsp. shastense

Adiantum shastense

Erythronium shastense

© Len Lindstrand III

© Julie Kierstead Nelson
The *Navarretia intertexta* complex (Johnson et al. 2013 *Phytotaxa*)
New & Revived Diversity in Monkeyflowers
(see Fraga’s revised Phrymaceae, Jepson eFlora)

Erythranthe montioides complex

Erythranthe palmeri complex

sensu Thompson (2012)

- Newly described species
- Resurrected species
Collinsia “metamorphica” complex
endemic to upper Merced River drainage
(Baldwin et al. 2011 Amer. J. Bot.; M.S. Park et al., in prep.)
Host-specific cryptic diversity in North American broomrapes

Aphyllon sect. Aphyllon (Orobanchaceae)

Aphyllon clades (by host)

A. fasciculatum
- Artemisia
- Eriogonum, Eriophyllum, or Hydrophyllaceae
- Galium = A. epigalium sp. nov.

A. purpureum
- Apioidae
- Asteraceae
- Saxifragales

A. uniflorum
- Asteraceae

Aphyllon epigalium, a new species

Colwell et al. 2017
Madroño 64:99-107

A novel example of horizontal gene transfer, from Galium to Aphyllon
(Schneider et al. 2018 Proc. R. Soc. B)
A discovery anticipated 100 yrs earlier

“This has the habit of *O. uniflora* but the calyx-segments are broad as in *O. fasciculata*. Moreover the color of the flowers is yellow as per note in field book, no. 6385. A spec. similar to this, Comptche, Harriet Walker 368, is in U.C. Herb.”

– W. L. Jepson July, 1918
And (semi-)cryptic tarplants in these taxa

- **Centromadia parryi** subsp. congdonii
- **Layia gaillardioides**
- **Blepharizonia plumosa**
- **Calycadenia pauciflora** race ramulos
- **Carlquistia muirii**
Heliothinae moths: 20 known tarweed specialists (in larval stage) discovered by Terry Sears
Cryptic lineage of “Megaprotubera” on cryptic lineage of Calycadenia multiglandulosa
Discoveries in California floristics

- Fine-scale diversity worthy of taxonomic recognition and informative about evolution keeps emerging from systematic studies.
- Progress in understanding origins and relationships of CA flora deepens appreciation for magnitude of diversification in CA (& N.Am.)
- New approaches to studying spatial patterns of diversity and endemism help to pinpoint areas of special floristic and conservation value.
Comprehensive review on assembly and evolution of California’s vascular flora in 1978
CA-FP taxa of Leguminosae that belong to larger, primarily North American radiations based on recent phylogenetic evidence.

Lupinus (Genisteae)
Drummond 2008

Astragalus (Galegeae)
Wojciechowski et al. 1999
Syst. Bot.

Tribe Psoraleeae
Egan & Crandall 2008
BMC Biol.

Lathyrus (Fabeae)
© Barry Breckling

Trifolium (Trifolieae)
Ellison et al. 2006

Tribe Loteae
Allan & Porter 2000
Amer. J. Bot.
CA-FP taxa of Compositae that belong to larger, primarily North American radiations based on recent phylogenetic evidence.

Cirsium (Cardueae)
Kelch & Baldwin 2003
Mol, Ecol.

Most native Astereae

Native Filaginiae (Gnaphalieae)

© Neal Kramer

Noyes & Rieseberg 1999
Amer. J. Bot.

© Neal Kramer

Galbany-Casals et al. 2010
Taxon

© Daria Snider

Primarily western North American genera of Senecioneae

Lee et al. 2003
Syst. Bot.

Primarily North American genera of Cichorieae

Pelser et al. 2010
Amer. J. Bot.
Extreme dysploid chromosome number reduction in resurrected & expanded tribe Madieae
Mediterranean-Californian disjunctions mostly explained by long-distance dispersal & ecological convergence (Kadereit & Baldwin 2012 *Taxon*).

Limited long-distance dispersal resolved for the Californian flora (Wen & Ickert-Bond 2009 *J Syst Evol*; Kadereit & Baldwin 2012 *Taxon*), mostly out (especially to Chile); arguably most significant for the Hawaiian flora...
California tarweeds (subtribe Madiinae; Compositae)
The Hawaiian silversword alliance (Argyrogedium, Dubautia, Wilkesia) descended from Calif. tarweeds (Baldwin et al. 1991 PNAS; Barrier et al. 1999 Mol Biol Evol)
Some other major Hawaiian endemic clades nested in western North American grades

(Sanicula (Apiaceae) Vargas et al. 1998 PNAS)

Hawaiian mints

Lindquist & Albert 2002 Amer J Bot

Hawaiian and American Viola

Ballard & Sytsma 2000 Evolution;
Marcussen et al. 2012 Syst Biol
Endemic (or near endemic) CA-FP conifers confirmed as ancient

- *Abies bracteata*
- *Picea breweriana*
- *Calocedrus decurrens*

References:
- Xiang et al. 2009 *Taxon*
- Bouille et al. 2011 *Tree Genet. Genomes*
Ancient, xeric-adapted (or -preadapted) woody endemic CA-FP eudicots

Aesculus californica (Sapindaceae)

Lyonothamnus (Rosaceae)

Carpenteria (Hydrangeaceae)

Malosma (Anacardiaceae)

Pickeringia (Fabaceae)

Cneoridium (Rutaceae)
Hesperelaea (Oleaceae): Isla Guadalupe endemic genus, extinct in 1800s'
cpDNA & nrDNA sequenced using NGS

Lineage older than Isla Guadalupe; clade includes New World genera
Discoveries in California floristics

• Fine-scale diversity worthy of taxonomic recognition and informative about evolution keeps emerging from systematic studies
• Progress in understanding origins and relationships of CA flora deepens appreciation for magnitude of diversification in CA (& N.Am.)
• New approaches to studying spatial patterns of diversity and endemism help to pinpoint areas of special floristic and conservation value
The California Plant Phylodiversity Project
A specimen-based, taxonomically comprehensive reanalysis of spatial diversity patterns

Baldwin et al. (2017)
Species richness and endemism in the native flora of California.
Amer. J. Bot. 104:487-501

993 genera, 5255 species of Californian vascular plants

Two main *Biodiverse* analyses:
All native vascular plants
All natives restricted to California

We compared the main centers of endemism discovered using range-weighted (RW) & non-RW turnover

1.38 million georeferenced specimen records (including non-CCH records)
Spatial measures of species richness & endemism

- **Species richness (SR):** Number of spp./grid cell
- **Weighted endemism (WE):** Inverse weighting of spp. by range size
- **Corrected weighted endemism (CWE):** WE/SR (WE corrected for species richness)
- **Significant endemism (Rand END):** A cell with endemism value in top 5% of the distribution of random values, from spatial randomization
Areas of both high richness & endemism

Klamath Ranges (high) Mt. Shasta region Sierra Nevada crest

White & Inyo Range Sweetwater Mountains

San Bernardino Mountains (high) Santa Rosa Mtns
Areas of both high richness & endemism

New York Mountains

Panamint Mountains

Clark Mountain Range

Providence Mountains

Desert Mountains of the Mojave Desert: Significant endemism even for species restricted to CA
Low richness but high endemism

The Channel Islands: A high proportion of range-restricted species but relatively modest overall species diversity
Local endemism hotspots

- Previously proposed endemic areas of Central Coast Ranges among areas of high weighted endemism (WE)
- Some also with significant endemism (Hamilton, Monterey, Napa-Lake, Pitkin-Bodega, San Carlos)
- Other areas (e.g., San Francisco Peninsula) also with significantly high endemism

Stebbins & Major (1965) *Ecol Monogr*
Range-weighted turnover among significant centers of species endemism

Jepson Bioregions
The Jepson eFlora:
http://ucjeps.berkeley.edu/eflora/
What is biodiversity?

Species richness

Phylogenetic diversity

3 species

7 My

20 My
Phyloendemism (range-weighted phylodiversity) patterns indicate concentrated centers of significantly high endemism in drier regions.

Thornhill et al. (2017) *BMC Biology*
Where are the priority conservation areas based on different biodiversity measures?

Kling et al. (2019)
Phil. Trans. R. Soc. B
Optimal conservation targets:

- Poorly protected
- Many resident taxa with:
 - Long branches
 - Small ranges
 - Poor protection across ranges
Top conservation priorities
Consensus areas of high conservation priority across different biodiversity facets
California Plant Phylodiversity Atlas (designed by M. Kling): A new conservation & floristic resource of the CPPP (JEPS)
Conclusions about CA flora

• Estimates of CA-FP diversity & diversification continue to rise, underscoring CA-FP as a biodiversity hotspot

• Relative importance of factors contributing to richness & endemism still uncertain but most endemic CA-FP lineages post-date mid-Miocene shift toward summer-drought

• High floristic richness strongly associated with areas of high topographic & substrate heterogeneity in the CA-FP

• Significantly high endemism (higher than expected based on levels of richness) especially notable in drier regions

• Areas of highest conservation priority largely in CA-FP foothills and coastal regions, where development likely
ACKNOWLEDGMENTS

• Lawrence R. Heckard Endowment Fund and National Science Foundation for support

• David Ackerly, Brent Mishler, and many others (especially Jepson staff & students) for assistance
A general finding for Eurasian-North American disjunctions: west. N. Amer. taxa usually most closely related to east. N. Amer. taxa

Donoghue & Smith 2004
Phil. Trans. R. Soc. Lond. B

Wen et al. 2010 *Darwin’s Heritage Today*

\[C_j = \sum_{i=1}^{n} \frac{p_{ij} s_i}{R_j} \]

- **Sum across grid cells**
- **Clade presence probability**
- **Cell protection status**
- **Clade range size**
- **Clade conservation status**
Optimal conservation targets:

• Poorly protected
• Many resident taxa with:
 • Long branches
 • Small ranges
 • Poor protection across ranges

Stepwise optimization algorithm:

1. Calculate the marginal value of fully protecting each site
2. Mark highest-value site as protected
3. Rinse & repeat
Total marginal benefit of fully protecting site

\[MV_i = \sum_{j=1}^{n} u_j \cdot \Delta B \]

- Sum across clades
- Branch segment length
- Security boost to clade from fully protecting site
Stepwise optimization algorithm:

1. Calculate the marginal value of fully protecting each site
2. Mark highest-value site as protected
3. Rinse & repeat

\[MV_i = \sum_{j=1}^{n} v_j \Delta B \]