Conservation of an Endangered Butterfly and the Management of Novel Plant Assemblages

Dr. Amy Lambert
University of Washington
2019 Ecological Restoration Symposium, Seattle
March 27, 2019
Colleagues and students at the University of Washington who have inspired and supported this work over the years including Dr. Kern Ewing, Dr. Regina Rochefort, Dr. Julie Combs, Dr. Kristin Gustafson, Dr. Martha Groom and Dr. Bruce Burgett. Practitioners, managers, regulators and planners who work tirelessly to conserve and protect rare, threatened and endangered species and habitats including Xerces Society: Bob Pyle local independent naturalists: James Miskelly (B.C.), Thor Hanson and Susan Vernon San Juan Island National Historical Park: Elexis Freddy, Jerald Weaver, Jenny Shrum, Raena Parson, Steve Ray and Ken Morgan US Fish and Wildlife: Ted Thomas, Karen Reagan and Zach Radmer Washington Department of Fish and Wildlife: Ann Potter, Dave Hays, Hannah Anderson and Ruth Milner San Juan Preservation Trust and SJ County Land Bank: Kathleen Foley, Eliza Habegge, seasonal ecologists, Dineh Judd and Claire Crawbuck Center for Natural Lands Management: Sierra Smith and Sara Hammam Washington Natural Areas Program: John Fleckenstein and Dave Wilderman
BACKGROUND

Believed extinct for 90 years

American Camp, San Juan Island National Historical Park, San Juan Island, Washington (1998)

Vancouver Island, British Columbia, Canada (1908)
BACKGROUND

14 specimens exist in museum collections

Island marble (*Euchloe ausonides insulanus*) Guppy and Shepard 2001

“greatly expanded marbling”
Relative Abundance
American Camp, SAJH

![Graph showing the number of adults over the years with a regression line and R² value of 0.2762.](chart.png)
The Xerces Society hereby formally petitions the U.S. Fish and Wildlife Service (USFWS) to list the island marble butterfly (*Euchloe ausonides insulanus*) as an endangered species pursuant to the Endangered Species Act (ESA) 16 U.S.C. § 1531 et seq. This petition is filed under 5 U.S.C. § 555(e), 16 U.S.C. § 1535(b)(x), and 50 C.F.R. § 424.14 (1990), which grants interested parties the right to petition for issuance of a rule from the Secretary of the Interior. Petitioners also request that critical habitat be designated concurrent with the listing, as required by 16 U.S.C. § 1533(b)(6)(C) and 50 C.F.R. § 424.12, and pursuant to the Administrative Procedure Act (5 U.S.C. § 553). Due to the threat of extinction and because of its small population size, restricted distribution, and the numerous factors threatening the species and its remaining habitat, we request an emergency listing and emergency critical habitat designation pursuant to 16 U.S.C. § 1533(b)(7) and 50 C.F.R. § 424.20. While the species is currently listed as a threatened species, the U.S. Fish and Wildlife Service (USFWS) has requested that the species be proposed for listing as endangered. Our request is based on the following factors:

- **Small population size, restricted distribution:** The species is found on only a small portion of San Juan Island, with a population estimated at less than 50 individuals.
- **Threatening factors:** Habitat loss due to human activities, such as development, agriculture, and invasive species.
- **Habitat conversion:** Conversion of natural habitats to agricultural and urban areas.
- **Invasive species:** Invasive plants and animals, such as non-native species, can compete with the island marble butterfly for resources and displace its habitat.

Therefore, we request that the island marble butterfly be listed as an endangered species and that critical habitat be designated to protect its remaining habitat.

Summary:
We, the U.S. Fish and Wildlife Service (Service), propose to list the island marble butterfly (Euchloe ausonides insulanus) as an endangered species and designate critical habitat under the Endangered Species Act of 1973, as amended (ESA). The island marble butterfly is found on the south end of San Juan Island, San Juan County, Washington, within 812 acres (329 hectares). This proposed critical habitat designation is necessary to protect the species from the threats it currently faces, including habitat loss and fragmentation.

Executive Summary:
Why we need to publish a rule. Under the Act, if a species is determined to be threatened or endangered, it must be listed as such. The Service has determined that the island marble butterfly meets the criteria for listing as an endangered species.

Preparation of the proposed rule:
- **Habitat loss and degradation:** This may result from habitat destruction, fragmentation, and modification caused by human activities.
- **Invasive species:** Non-native species can outcompete the island marble butterfly for resources, leading to a decline in its population.
- **Habitat conversion:** The conversion of natural habitats to agricultural or urban uses reduces the available habitat for the species.

Critical habitat designation:
The proposed critical habitat designation is necessary to protect the species from these threats. The designated habitat includes areas that are currently occupied by the species, as well as areas that historically supported the species and are necessary for its survival.
STUDY SITE

American Camp, San Juan Island National Historical Park

- open area (full sunlight)
- topographic relief

Mt. Finlayson 87m
HOST PLANT HABITAT

NON-NATIVE field mustard
Brassica rapa L. *rapa*

- availability of appropriate host plants (glucosinolates)
HOST PLANT HABITAT

Brassica rapa
NON-NATIVE tumble mustard
Sisymbrium altissimum L.
HOST PLANT HABITAT

- **Brassica rapa**
- **Sisymbrium altissimum**
HOST PLANT HABITAT

NATIVE tall peppergrass
Lepidium virginicum var. menziesii (DC)Hitchc.
HOST PLANT HABITAT

- Brassica rapa
- Sisymbrium altissimum
- Lepidium virginicum var. menziesii (native)
HOST PLANT HABITAT

- suitable state of growth (i.e., plant phenology)
LIFE HISTORY

late April

May 21- May 24
LIFE HISTORY
LIFE HISTORY
LIFE HISTORY
What factors influence the rarity of island marble?
What factors cause mortality?
METHODS
Survivorship and mortality

• Survey 3-5 days for eggs, instar III and IV every 1-2 days, instar V several times a day

• Identified larval instars based on coloration of eggs, larvae size and morphology

• In 2005-2008, sampled 1617 individuals

• Logistic regression models were used to examine the relationship between host plant species and survival beyond IV
RESULTS
Survivorship

Yearly survivorship of larvae (beyond instar IV) on three host plants species (2005-2008)

No significant difference in survival between host plant species was detected (logistic regression, Wald test of host plant effect, p=0.11). In terms of percentage, survivorship was highest on *L. virginicum var. menziesii* in 2007 (14.2%) (Lambert 2011)
Jakle’s Lagoon
2005
RESULTS
Causes of mortality

PREDATION
46% (n=752)
RESULTS

Causes of mortality

DEER HERBIVORY
26% (n=415)

145 eggs/18 plants
111 eggs consumed by deer (77%)
RESULTS
Causes of mortality

STARVATION
9% (n=139)

HOST PLANT DAMAGE
6% (n=102)

Family Cercopidaeae (spittle bug)
RESULTS

Causes of mortality

Host-specific sources of mortality of all life stage, among all sites and host plant species (2005-2008)

- L. virginicum var. menziesii
- S. altissimum
- B. rapa

Predation: 77%
Deer: 43%
Starvation: 11%
Damage: 14%
Disappearance: 20%

Percent mortality within host plant species (n=1515); 51 unknown causes of death and 51 likely walked to pupate (Lambert 2011)
Reduction of field mustard (*Brassica rapa*) due to non-native perennial grasses and deer herbivory.
Relative Abundance
American Camp, SAJH

NUMBER OF ADULTS

YEAR

R2 = 0.2762
CONSERVATION AND RESTORATION

Reintroduction of a native host plant, 2007

Habitat restoration, 2013-2018

Excluding deer, 2013-ongoing

UW Bothell students planting native plants

Captive rearing, 2012-ongoing
HABITAT RESTORATION - BACKGROUND

Restoration of Northern Puget Trough Coastal Prairie (NPTCP)

Western buttercup (*Ranunculus occidentalis*), Meadow death camas (*Zygadenus venenosus*), Roemer’s fescue (*Festuca roemerii/idahoensis*), Leichtlin’s camas (*Camassia leichtlinii*), Harvest brodiaea (*Brodiaea coronaria*)
Agropyron repens, Holcus lanatus, Poa pratensis, Rumex acetosella, Hypochaeris radicata, Vicia sativa and Teesdalia nudicaulis

- 41 species (31 introduced species)
Prescribed burn March 2004

HABITAT RESTORATION - BACKGROUND
Treatment effects on germination and early establishment of eight native species

<table>
<thead>
<tr>
<th>Native species</th>
<th>S or NS?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luzula multiflora</td>
<td>S ↑ F+H, H</td>
</tr>
<tr>
<td>Trifolium tridentatum</td>
<td>S ↑ F+H</td>
</tr>
<tr>
<td>Bromus sitchensis</td>
<td>NS</td>
</tr>
<tr>
<td>Festuca roemeri</td>
<td>NS</td>
</tr>
<tr>
<td>Lomatium utriculatum</td>
<td>NS</td>
</tr>
<tr>
<td>Lomatium nudicaule</td>
<td>NS</td>
</tr>
<tr>
<td>Elymus glaucus</td>
<td>NS</td>
</tr>
<tr>
<td>Danthonia californica</td>
<td>NS</td>
</tr>
</tbody>
</table>

ANOVA (α=0.05)
HABITAT RESTORATION

How do we increase the abundance of island marble in the short term while ensuring the conservation of the species over the long term?

Create multiple patches of habitat that includes host plants and native grasses and forbs that island marble relies on to find a mate, reproduce, mature and pupate.

Research design takes into account both butterfly biology and plant community dynamics.
STUDY DESIGN

- Open habitat (south-facing for wind dispersal)
- Topographic relief
- Close proximity to sites of prairie restoration
STUDY DESIGN

Each site is 175m x 80m and contains 20 paired plots.
STUDY DESIGN

- Staged approach to restoration treatments
- Poly barrier fence to prevent deer herbivory
- Distance between plots maximize dispersal and number of eggs
YR 1: Establish moderately dense patches of host plants
• Mow and treat with herbicide
• Add seed of *B. rapa* and native perennial forbs
YR 2: Close study plots to protect overwintering pupa

- *B. rapa* declines as introduced grasses re-establish
YR 3: Collect larvae for captive rearing
- *B. rapa* continues to decline
- Increase in seed bank
YR 4: Plant with native grasses and perennial forbs
- Mow and treatment with herbicide
- Add seed of *B. rapa*
- *B. rapa* increases in response to disturbance
YR 5: Establish novel plant assemblage
- *B. rapa* seed bank replenished
- *B. rapa* follow small-scale disturbance (small mammals)
YR 3
QUESTIONS

Can we build it?
If we build it, will they use it?
If they use it, will they survive?
RESTORATION CYCLE

Island marble year

Build it
Use it
Survive
Use it
Build it
Build it
Build it
Build it

Jenny Shrum, NPS Ecologist
Kristin Attebery, Allena Bassett, Jackelyn Garcia, Lana Hauschild, Allyn Rwamashongye, Chelsey Yan, Philip Palios, Sam Prudente
Can we build it? Yes!

- Field mustard established in all research plots
- Native species including four species of grasses Bromus *sitchensis*, *Elymus glaucus*, *Festuca roemerii* and *Achnatherum lemonii* (~5,000 plugs), two bulbs, *Camas quamash* and *Fritillaria affinis* (~5,000 bulbs) and five forbs including *Cerastium arvense*

Still some challenges…
• Host plant phenology can differ between years
• Capacity to manage and implement restoration is limited by funding (e.g., collecting seed, managing propagation efforts and out-planting)
• Limitations in seed availability for some native plants
If we build it, will they use it?
Yes!

Success. Eggs were laid across all plots every year (e.g., 716 eggs in year one plots in 2017).
If they use it, will they survive? Yes!

Sources of mortality are diverse and complex…

- Survival of eggs to instar V were similar across years, 1% (n=5) in 2017, 3% (n=8) in 2016 and 2% (n=13) in 2005-2008
- Greatest source of mortality was predation
- Second greatest source of mortality was starvation

Lambert 2017
Important lessons

- Species interactions are complex and require multiple solutions
- Consider a staged research design that can be monitored and adapted as needed
- Produce restoration management protocols that can be implemented by conservation managers outside of the local restoration site

Candidate Conservation Agreements with Assurances (CCAA), voluntary conservation activities that benefit island marble

Photo courtesy SJ Preservation Trust, Kathleen Foley tends an island marble butterfly habitat expansion plot on Frazer Homestead Preserve
Reintroduction of Native Host Plant

tower mustard (*Turritis glabra*)

Adult resting on container plant of tower mustard, South Beach dunes, SAJH, 2006
Reintroduction of Native Host Plant

Some success (n=1).

More experimental work needed…variation in plant phenology
Captive Rearing

Very successful, 98-77% survival to adult

Dr. Julie Combs, UW, and Josephine, Field Assistant
Captive Rearing

However, some challenges remain…

…matching phenology to variable environmental conditions in the field.
Excluding deer

Success. After three years of trial and error (2013-2015), deer exclusion increased survival of egg and early instar larva on field mustard

However, some challenges remain including:
• Compliance with NPS cultural landscape policies
• Increase in browsing pressure
• Hindered movement of adults
• Potential predation by birds
Methods
Relative adult abundance

- not an absolute count
- low impact methodology
- high correlation w/ MRR for conspicuous butterflies

- weekly counts (6 – 9 days)
- behavior recorded
- environmental parameters (e.g., temperature)
Mission blue *Plebejus icarioides missionensis* Hovanitz resting on silver leaf lupine *Lupinus albifrons* var. *collinus*
Painted lady *Vanessa cardui* Linnaeus resting on creeping thistle *Cirsium arvense*
Island marble *E. ausonides insulanus* resting on field mustard *Brassica rapa L. rapa*
Island marble is a subspecies of the large marble (*Euchloe ausonides*) Lucas 1852.
Coast Salish

Perhaps Island Marble has been around as long as people have been observing them in the landscape.

Many of the Native American peoples living in the Northwest are the descendants of people who have lived in the area for thousands of years.

Annie Yellow Bear pounding camas bulbs, Kamiah, Idaho, 1890

Photos courtesy of Nez Perce NHP, Stephen D. Shawley Collection

Island marble in native prairie...
Coast Salish

Fish trap workers, Salmon Banks Beach camp, 1894-1934

Coast Salish reef netting off Stuart Island

...between coastal lagoons.

...along sandy beaches.

Photos courtesy of Photo Gallery (U.S. NPS), San Juan NHP
Belle Vue Sheep Farm, turnip fields (*Brassica rapa*) were planted to increase forage for sheep, 1884; present-day American Camp grasslands

...and introduced grasslands.
Early Colonial Settlement

Photos courtesy of Mike Vouri, Julia Vouri and San Juan Historical Society. San Juan Island (Images of America)
The number of species extinctions in the history of life is almost the same as the number of origins…

- David M. Raup

The number of species that have gone extinct in the last century would have taken,… between 800 and 10,000 years to disappear...indicating that a sixth mass extinction is already under way.

- Gerardo Ceballos, et.al.