

Track plate and camera trap

Check and refresh bait and lure twice weekly for 3 weeks

We captured domestic species in moderate frequencies

Top predators were absent in Seattle. We detected coyotes at a low rate.

Raccoons and opossums were the most common species. Other mesocarnivores were rare or absent.

Temporal comparison Activity times

The two species had significantly different activity patterns (Watson's U² test, p < 0.001)

Habitat use comparison Occupancy modeling

Occupancy models can incorporate covariates that affect detection and occupancy.

Occupancy model covariates

- Road length (w/in 250m)
- Impervious surface (percent w/in 250m)
- Human population size (w/in 250m)
- Distance to edge (m to nearest patch edge)
- Patch area
- Restoration phase
- Edge length (w/in 250m)

Occupancy model covariates

- Road length (w/in 250m)
- Impervious surface (percent w/in 250m)
- Human population size (w/in 250m)
- Distance to edge (m to nearest patch edge)
- Patch area
- Restoration phase
- Edge length (w/in 250m)

Letimated opossum occupancy decreases as impervious surfaces increase

Estimated raccoon occupancy increases slightly as impervious surfaces increase

Diet comparison Stable isotopes

Studying diet with stable isotopes

Heavy nitrogen isotope indicates higher trophic level

Studying diet with stable isotopes

Heavy carbon isotope indicates anthropogenic foods

 $\delta^{13}C$

Raccoons have a higher trophic level diet with a greater breadth and contribution of human foods

Species comparison conclusions

- Species overlapped but raccoons
 - are more crepuscular
 - are less affected by the presence of impervious surfaces
 - have a broader diet with more human food
- Species co-occur, but raccoons expand their niche in urban environments
- Future research on other species (domestic cats, coyotes)

Identify movement corridors Landscape resistance mapping

Resistance mapping conclusions

- Duwamish River Valley may be a substantial barrier to movement, esp.
 Boeing Field and north
- More internal connectivity in South Seattle than West Seattle
- Validate with genetic data

- 1. Raccoons and opossums are the most common mesocarnivores
- 2. How do these species interact with each other?

- 1. Raccoons and opossums are the most common mesocarnivores
- 2. Raccoon expanded niche; opossums are relatively more specialized

Urbanization and ecological processes

- 1. Raccoons and opossums are the most common mesocarnivores
- 2. Raccoon expanded niche; opossums are relatively more specialized
- 3. How do they move between parks?

Urbanization and ecological processes

- 1. Raccoons and opossums are the most common mesocarnivores
- 2. Raccoon expanded niche; opossums are relatively more specialized
- 3. Development may impact dispersal, but needs validation with genetic data

Acknowledgements

Student workers: Meike Lobb-Rabe, Stephanie Ingle, Dylan Rich, Nicolás Cruz, Destiny Mims, Nicholas Iapoce, Lorraine Davis, Sam Levy

UPS: Mairan Smith, Kena Fox-Dobbs, Slater Museum of Natural History

